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QUASI-T~NSVERSE SHOCK WAVES IN AN ELASTIC MEDlUM fN THE CASE OF 
SPECIAL TYPES OF INITIAL STRAIN* 

E-1. SVRSHNIEOVA 

Weak shock waves in isotropic elastic medium under an arbitrarily small 
initial strain were considered in /1,2/. The present paper deals with 
shock waves with higher order of symmetry, when there are special types 
of initial strain; all the results are obtained in explicit form. 

1. Fomultation of the problem. The investigations are carried out using the same 
formulation and the same degree of accuracy as in /l-3/. The general form of the elastic 
potential of the isotropic medium is given by the expression 

qP=p0U kj, S)=-'/9hIla -t-pit f BIll2 -l-y& + 621~ + 
fraZfpoTa(S-&) +const. 

Ix=& Z*=eijE+j~ Ist=Ejjej&. 

( 

aw. airr aw 
%j=+ ~+-$-b-$--+ 

) 

Here Uis the internal energy, 
temperature, 8 is the entropy, 

pc is the density in the stress-free state, T is the 

placemant tensor components, & 
etf are the finite strain tensor components, a~_are the dis- 
are Lagrangian coordinates, 

stress-free state is rectangular Cartesian. 
and the coordinate system in the 

The axes of this system are chosen so that the 
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planes g, = co& represent wave fronts at various instants, and W=dQdt is the wave veloc- 

ity along the coordinate Es. We prevent these planes from rotatingby putting &n&E, = aw,fag, = 
0. The axes 6, and $a are chosen So that &o,l@, +&as& 
plane). 

~4 0 (the principal axes in the f,E,- 
We eliminate the rotation of these axes by means of condition @w,/a&,- a~~/ag, = 0. 

Here SIS vanishes in both the linear and non-linear approximation. At the shock wave front 
the only parameters undergoing a jump are u = a~,&,, u = &u&V&, w = a~&&. The initial state 
Of Strain is described by the initial values of these quantities u, V,w, and by the strain 

components 8~1,%~, which r-in unchanged at the discontinuity. 
We know /l/ that in SU& media only cne pair of quasilongitudinal and two pairsofquasi- 

transverse waves propagating on both sides of the axis & may exist. Just as in /2/,weshall 
only consider quasi-transverse waves. 

In the case of arbitrary initial strain, the equation of the shock adiabatics in the UT- 
Plane has the following form for the quasi-transverse waves: 

(24' + up - R")(Uv - Vu)+ 2G(u - U)(Y - v) = 0 (1.1) 

fs = W#J + b(R'- ua - &+)/(A + p) 

G = (2~ + W (err - s& 

x = p + (P i- B + "&a&. f Ir) - 25 

2b = h + 2p + 6 + 3&v, R" = U4 + v' 

The condition of non-decrease in entropy and velocity of the shock wave are written in 
the form 

8p$,(S-&)== --x I@ - Uf" +(u - v)*l(U~+3--Rf);BO (1.2) 

@W'z=lzQ- W++vS -BR'fUU+Vv+ 

c(U-U~-G((D-Y~+2[w(II-U)fV(U-V)] 
(u-V-!-W--v)* 3 

a0 = p + 2bfl” - fr + %YK%l + %%I 

(1.3) 

The condition of non-decrease in entropy (1.2) is satisfied in the WV-plane by the inside 
of the S-circle u* + VP = IZ s for media with x> 0, and the region outside this circle for 
media with x CO. The conditions of evolution /1,2,4/ of the discontinuity 

a) c,*< Wgc,+, Cl+< W<CC,- (1.4) 

bj c;<w<ccl*,O<:<Cc,- 

must hold in addition to (1.2) for the shock to exist. 
Here ci-, c#+ axe the characteristic velocities in the states ahead of and behind the 

shock respectively 

PO (Cl.,"Y = co -x {u" $ VP f 'I, [(v* - ua - G)p + 4uVr~') 11.5) 

PO (%a-I* = ao -x {RS * '/t[(vf+ UP-G)' + 4UVY) 

The f signs are chosen SO that c,>c,. The two systems of inequalities (1.4) enable us to 
Separate all Shock waves into fast (a) and slow (b) waves. 

Let us uSe the point A (U,y) to represent in the u&?-plane the initial State before the 

shock (Fig.1). The S-try properties of the shock adiabatic /2/ clearly imply that it is 
sufficient to assume always that G>O, W>O, V>O. In alf figures thick lines depict the 
Segments of the shock adiabatic Satisfying simultaneously the conditions (1.2) and (1.4) for 

media with x>@, and thick dashed lines are used for 

media with x< 0. Bere we have W=ca- at the points 
F, F’,K, K’, D; W-cl- at the point L; W = cl+ at the 
points E,H; W-c,+ at the point J. In the present 
problem condition (1.4) was found to be stronger than (1.21, 
and the demand that the evolution conditions (1.4) be 
satisfied is sufficient for both sets of inequalities to 
hold. 

In the case of arbitrary initial strain the position 

of the ends of the evolution regions (points F, F’, KK, K’ 
E,H,J,D,L) can only be shown qualitatively. On the 
other hand, if any of the initial strains U,v, ia,, - e, 1 
are very small or altogether absent, the equation of the 
shock adiabatic degenerates into a circle intersected by 
a straight line and the position of the ends of the 

Fig.1 



evolutionary segments can be found analytically. Below, we shall retain the notation used to 

indioate all end points in the genexal case. W&n there are no initial strains we obtain the 

problem which was-studied in /5/. 

Fig.2 

Fig.3 

i 

Fig.4 

2. The case P==O. we have u>O,G>O. The equation of the shock adiabatic decompos- 
es into two equations 

v=O, (u~GJU)~+Y~=(U~G/W)~ 
(2.3.) 

The above equations represent, in the W-plane, the abscissa axis and a circle withcentre 
at the point 0,: us -GIU<O,o = 0. fts radius R,- U -j-G/u is greater than the radius fim u 
of the entxopic circle (1.2). ~0th circles pass through the initial point A (U, 0) and the 
entropic circle lies wholly within (2.1) (Fig.2). 

For media with x> 0 the only physically feasible regions will be those lying on tba 
segment of diameter u=O within the S-circle. The number and positions of these ranges 
depend on the initial strain. When Ua<@S, only a slow shock wave can exist and the cox- 
responding segement of the adiabatic U)tl> - U/2 (Fig.2a) is AE. l&en l?>86, a slow 
shock wave may exist on the segment AFof the abscissa U) u>*/sI-u + fVS-8@Val and a 
fast shock wave on the segment &?I?:- %iEl +(uP-8@s~s~< u< - U/2. 

nor media with x<O the conditions of evolution tl.4) are satisfied by the following 
parts of the adiabatic: the segment on the positive part of the abscissa n> 0, a=0 begin- 
ning at the point A (fast shock wave); if US< 2G, then we also have a fast shock wave on the 
segment HR': -(2GJU+U)gu<-22U, ir==O; the slow wave on the circle 12.1) is represented 
by an arc which passes through the initial point A, is symmetric about the abscissa axis and 
its ends have the coordinate u== - UVG, i.e. they always lie in the second and fourth 
quatirants of the uv-plane O?ig.Za). In the limit as U*JG-+O, the arc ends are located onthe 
v-axis. When U2 =2G, the ends of the arcs join and the whole circle (2.2) satisfies the 
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conditions (1.2) t (1.41. When Ua>26, the slow wave has , apartfromthe complete circle, 
also the correapcMUng segment DKof the abscissas - ZU< uQ -(ZG/U + u) (Fig.2b). 

3. The case U 30. We have V>O,G>O. The equation of the shock adiabatic hasthe 
form 

u= 0, ua + (v-G/V)*= (V - G/V)f 13.1) 

This represents the whole of the ordinate axis and a circle of radius &, = IV-G/V 1 with 
centre at the Point Of(u-0,v3 G/v), passing through the initial point A (0, V),at which 
it touches the entropic circle (1.2). When G> P , than for the media with X>O the 
segment of the ordinate extending from the initial point A to the point v= -V/2 fast wave) 
(Flg.3a) will be evolutionary. Three shook waves may exist for media with x (0 under the 
Same initial conditions: a slow wave at the segment of the oridnate axis whexe 
I-V+ (Va +8G)Y,another Slow wave on the segment DL of the same axis 

VQ v,< iI, 

vg--2V. 
-'i* tv -i" (v* + 8G)Y d 

v and a fast wave represented b the complete circle (3.1) and the positive part, of 
the ordinate SXiS extending Esom the point Hto the circle and beyond. Compared with the 
general case (Pig.11, here we have two arcs of the circle corresponding to the fast waves 
joined at the point A. 

If G<V', then the whole circle (3.1) lies inside the entropic circle and A is their 
only consnon point. For materials with x>O condition (1.4) singles out the following seg- 
ments of the adiabatic: the Segment APof the ordinate axis V ;a v > '/a f- V -i- (F + 8G)r=l 
(slow wave) , and the whole circle (3.1) and a segment of the adiabatic extending from the 
circle to the point v== - Vi2 (fast wave). If V'>46, then the point v= - V/2 lies 
inside the circle (3.1) and serves as point E where .W(E)=++ (Fig. 3b). If on the other 
hand 46>v">G, thenthepoint v= -V/2 becomes the point J where w(f)= es+ (Fig.3~). 
When v*=-&, the adiabatic passes through the Point VI - V/2 LC - @, and the character- 
istic velocities in it coincide cl+ ==c=+. In studying simple waves /3/ the point u = -1/g 
in question was one 02 the singularities of the integral curves. 

For media with xCO and the conditions G< Vz, the segments feasible for shock waves 
will be the segment on the Positive part of the ordinate axis from the initial Point onwards 
V<V< TV (fast wave) and the segment DLof the ordinate axis on which -2v~v~---'/*~v+ 
(vt + w/*1 (slow wave). Clearly, when G = p, the Points D and L merge and the segments 
DLand AFvanish, while the circle of the adiabatic.(3.1) contracts to the point A. If lJ= 0 
and V=O simultaneously, the adiabatic (1.1) degenerates into two straight lines coinciding 
with the &v-coordinate axes, and the entropic circle (1.2) contracts to the point 0. The 
state before the shock corresponds to the origin of coordinates. Clearly, under such prior 
strain no shock waves can exist in media with x> 0. In the case of media with x (0, the 
state behind the shock wave corresplnds to the whole abscissa axis (rapid wave) and the 
segment -~~~v~;v'% of the ordinate axis (slow wave). 

4. The case U -0. Here U> 0, V> 0. The shock adiabatic (1.1) takes the form 

us + v2 F=: J?=, v= UVfU (4.11 

The adiabatic again degenerates into a circle intersected by a straight line passing through 
the origin of coordinates in the direction of the former asymptotics (Fig.la). The circle of 

the adiabatic coincides with the entropic circle (1.2); therefore we have s= const every- 
where on it. The circle yields a shock wave in which there is no increase in entropy for 
media with x>O, as well as x<O, and the velocity Wcoincides with one of the character- 
istic velocities (Cz- for X> 0 and cl- for x(O). The wave can also be regarded as a simple 
wave in the form of a step propagating at a constant rate without changing its form /3/. We 
see from (1.1) that the wave is purely transverse, and we have u)= lo,. 

The segments lying on the rectilinear part of the adiabatic, physically realizable in 
media with X> 0, will be the segments extending from the initial point A (U, V) totheorigin 
of coordinates F (slow wave) and from the Point E(- u/2, -V/2) to the Point -G, -V fast 
wave). For media with ~(0 the segments will be repreeented by a ray originating at the 
initial Point D- uVlU (fast wave) and a segment of this straight line extending from the 

circle to the point D (--Su,--2%') ~slow wave) (Fig.4a). 
Since G represents a product of initial deformation and elastic constants of the medium 

it follows that the case GOI= 0 can be interpreted in various Ways. It can imply either the 

absence of the deformation e,,- Q*== 0 in media with finite X and 2p +s/ay+Oo or it can 

represent media of special type in which my- -"l& In such media a part of the shock adia- 

batic will be a circle with centre at the origin, and S= con?+t for arbitrary initial strain. 

5. The case odgm. Let US see whether the results obtained in Sect.4 for G= 0 can 

be arrived at by passing to the limit as S--O. We consider a value of G which is small, but 

not zexo. We write GIRS=~<~ and study the whole solution in terms of the expansion in 6, 
restricting ourselves to the first powers in 8. In this case the coordinates of all Points 



(F, R, E, H, J,Dt L) can be determined exactly by analytical methods (when G is small, the points 

F'and R'are not present 121). The shock adiabatic itself differs little from the correspond- 

ing curve for G SO. The coordinates of the points F,E and D differ little from the corres- 
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ponding coordinates in Sect.4. 

F (--2V'8JR',2?'%lR') 
E (-'I, (I [i + f2 VWRS], -'l,V ll - 12C"6/R=1) 
D f-2i3 [I-3vrGIRp1, -2V[1+3 ~~/R~l) 

To find the coordinates of the remaining points we use the variable x which varies mono- 
tonically along the adiabatic /l/. We can assume that r==tgs where cp is the polar angle in 
a system with centre at the initial point A, and the angle 9 is measured from the first 

characteristic direction at the point A which for small 6 is almost the same as the direction 
of the radius vector of A. Passing from x to Cartesian r,v-coordinates, we obtain for small 
ii the formulas 

u=u-2(U- Vr)l(l + 2) -t" 0 (S), u = V - 2 (V + Us)/(l + 2') i_ 0 (6) 

The x coordinates of the points R and L are found as the roots of the quadratic equation 
W - Ci- - 0 

fL,K = 
u*-v*&((RL- tYYVS)'I' +o(~) 

3uv 

The point L always lies in the fourth quadrant below the point ll,-V, and the point R 
lies in the second quadsant below the point - U,V. The position of the points depends on the 
initial state U, V. When u- 0, both points K and t approach the abscissa axis, and when 

v-00, the ordinate axis. This agrees with the limiting cases U=O or V==O (Sect.2 and 3). 
The coordinates of the points I and H are obtained as the two real roots of the equation 

324 -4rs(U'- vr)l(VV) - 6s' - 1 + 0 (a) = 0 

The roots were found by numerical methods. The point J lies in the fourth quadrant above 
the point (i, -V,and point lies H in the second quadrant above the point - U,V. Both points J 
and R approach the abscissa axis as V-O, and the ordinate axis as U-+0. Irrespective of 
the initial conditions, there are segments on the loop of the adiabatic on which the condi- 
tions of evolution (1.4) do not hold. 

When 6-0, the adiabatic becomes a circle intersected by its diameter. The points F,E,D 
pass to their limit positions corresponding to Sect.4 and thersmaining evolutionary segmentsER, 
AJ,AHoccupy only a part of the adiabatic circle (Fig.4b) and not the whole circle asinSect.4. 

6. The case GB~. When PIG are small, the size of the loop in the shock adiabatic 
becomes of the order of GIR. Limiting ourselves as before to the region of order Jf'&, we 
find that since GIR>&??~ the shock adiabatic in this region degenerates into two intersect- 
ing straight lines s= U,U= I. The evolution conditions on these lines are satisfied by the 
following segments: for materials with x>O we have the segment AE:U>u >-U/2 on the 
straight line v=V (slow wave) and the segment AJ:V>V>-VI2 on the line s= U (fast wave); 
for materials with x<O we have the segments - ~J<u<-~U and U< u<m on the line Y=V 
(fast waves) and the segmentsVg"<m and --oc<u< - 2V on the lfne (I= U(slow waves) (Fig.4c). 

Just as in Sect.4, the restrictions imposed on G hold either because of theinitialstrain, 
or because of other properties (constants) of the medium itself. We can assume that t 811 - 

eFp I> R2 when (2~ i 3i,y)ix, is finite, or that x -. 0. 

7. Media with X=O. Should we find a material in which x= 0, we shall find (see 
(l.l)-- (1.3)) that when (2~ -+5/2yf(e,, - Et,) are finite, shock waves will propagate with constant 
velocity %V without an increase in entropy S. The shock adiabatic will be represented by two 
straight lines u= U, V= v whose points will all satisfy conditions (1.2) and (1.4). 
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2. 
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